Package: chyper (via r-universe)

August 29, 2024

Type Package

Title Functions for Conditional Hypergeometric Distributions

Version 0.4.2

Author William Nickols

Maintainer William Nickols <willanickols@gmail.com>

Description An implementation of the probability mass function, cumulative density function, quantile function, random number generator, maximum likelihood estimator, and p-value generator from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Repository https://willnickols.r-universe.dev

RemoteUrl https://github.com/willnickols/chyper

RemoteRef HEAD

RemoteSha 24abe902d8023821ca22fcbefda337caaec571f4

Contents

dchyper	r									•	•						•							1	2
meanch	yp	er	•							•	•	•	•		•	•	•	•	•					1	3
mleM			•							•	•	•	•		•		•	•	•					1	3
mleN			•							•	•	•	•		•		•	•	•					4	4

dchyper

10

leS	. 5
10mM	. 6
10mN	. 6
chyper	. 7
valchyper	. 8
chyper	. 8
hyper	. 9

Index

dchyper

Probability mass function for conditional hypergeometric distributions

Description

Calculates the PMF of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

dchyper(k, s, n, m, verbose = T)

Arguments

k	an integer or vector of integers representing the overlap size
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The probability of sampling k of the same items in all samples

Examples

dchyper(c(3,5), 10, c(12,13,14), c(7,8,9))

meanchyper

Description

Calculates the mean of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

meanchyper(s, n, m)

Arguments

S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes

Value

The mean of the conditional hypergeometric distribution specified

Examples

```
meanchyper(10, c(12,13,14), c(7,8,9))
```

mleM

Maximum likelihood estimator for sample size in conditional hypergeometric distributions

Description

Calculates the MLE of a sample size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
mleM(population, k, s, n, m, verbose = T)
```

Arguments

population	the index of the unknown sample size
k	the observed overlaps
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes where the value of the un- known sample size should be any integer as a placeholder
verbose	T/F should intermediate messages be printed?

Value

The maximum likelihood estimator of the unknown sample size

Examples

```
mleM(1, c(0,0,1,1,0,2,0), 8, c(12,13,14), c(0,8,9))
```

mleN

Maximum likelihood estimator for a unique population size in conditional hypergeometric distributions

Description

Calculates the MLE of a unique population size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
mleN(population, k, s, n, m, verbose = T)
```

Arguments

population	the index of the unique population to estimate
k	the observed overlaps
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population where the value of the unknown population size should be any integer as a placeholder
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

mleS

Value

The maximum likelihood estimator of the unknown unique population size

Examples

```
mleN(1, c(0,0,1,1,0,2,0), 8, c(0,13,14), c(7,8,9))
```

ml	.eS

Maximum likelihood estimator for overlap size in conditional hypergeometric distributions

Description

Calculates the MLE of the overlap size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

mleS(k, n, m, verbose = T)

Arguments

k	the observed overlaps
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The maximum likelihood estimator of the intersecting population size

Examples

mleS(c(0,0,1,1,0,2,0), c(12,13,14), c(7,8,9))

momN

momM

Method of moments estimator for sample size in conditional hypergeometric distributions

Description

Calculates the MOM estimator of a sample size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

momM(population, k, s, n, m)

Arguments

population	the index of the unknown sample size
k	the observed overlaps
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes where the value of the un- known sample size should be any integer as a placeholder

Value

The method of moments estimator of the unknown sample size

Examples

momM(1, c(0,0,1,1,0,2,0), 8, c(12,13,14), c(0,8,9))

momN

Method of moments estimator for a unique population size in conditional hypergeometric distributions

Description

Calculates the MOM estimator of a unique population size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
momN(population, k, s, n, m)
```

pchyper

Arguments

population	the index of the unique population to estimate
k	the observed overlaps
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population where the value of the unknown population size should be any integer as a place-holder
m	a vector of integers representing the sample sizes

Value

The method of moments estimator of the unknown unique population size

Examples

momN(1, c(0,0,1,1,0,2,0), 8, c(0,13,14), c(7,8,9))

pchyper	Cumulative density function for conditional hypergeometric distribu-
	tions

Description

Calculates the CDF of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

pchyper(k, s, n, m, verbose = T)

Arguments

k	an integer or vector of integers representing the overlap size
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The probability of sampling k or less of the same items in all samples

Examples

pchyper(c(3,5), 10, c(12,13,14), c(7,8,9))

```
pvalchyper
```

Description

Calculates p-values from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
pvalchyper(k, s, n, m, tail = "upper", verbose = T)
```

Arguments

k	an integer or vector of integers representing the overlap size
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
tail	whether the p-value should be from the upper or lower tail (options: "upper", "lower")
verbose	T/F should intermediate messages be printed?

Value

The probability of getting the k or more (or less if tail="lower") overlaps by chance from the conditional hypergeometric distribution specified by the parameters

Examples

pvalchyper(c(1,2), 8, c(12,13,14), c(7,8,9), "upper")

qchyper

Quantile function for conditional hypergeometric distributions

Description

Calculates the quantile function of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

qchyper(p, s, n, m, verbose = T)

rchyper

Arguments

р	the desired quantile or quantiles
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The minimum integer (or integers for a vector input) such that the input probability is less than or equal to the probability of sampling that many of the same items in all samples.

Examples

```
qchyper(c(0,0.9,1), 10, c(12,13,14), c(7,8,9))
```

rchyper	Random number generator for conditional hypergeometric distribu-
	tions

Description

Generates random numbers from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
rchyper(size, s, n, m, verbose = T)
```

Arguments

size	the number of random numbers to generate
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

A vector of random numbers generated from the PMF of the conditional hypergeometric distribution specified by the parameters

Examples

rchyper(100, 10, c(12,13,14), c(7,8,9))

Index

dchyper, 2 meanchyper, 3 mleM, 3 mleN, 4 mleS, 5 momM, 6 momN, 6 pchyper, 7 pvalchyper, 8 qchyper, 8 rchyper, 9